p53 responsive nucleotide excision repair gene products p48 and XPC, but not p53, localize to sites of UV-irradiation-induced DNA damage, in vivo.

نویسندگان

  • Maureen E Fitch
  • Irina V Cross
  • James M Ford
چکیده

The p53 tumor suppressor gene is an important mediator of the cellular response to ultraviolet (UV)-irradiation-induced DNA damage and affects the efficiency of the nucleotide excision repair (NER) pathway. The mechanism by which p53 regulates NER may be through its ability to act as a transcription factor, and/or through direct interactions with damaged DNA or the repair machinery. p53 has been shown to regulate the expression of the DDB2 gene (encoding the p48 protein) and the XPC gene, two important components of the NER pathway involved in DNA damage recognition. In this study, a localized UV-irradiation technique was used to examine the localization of p53, p48 and XPC proteins in relation to sites of UV photoproducts, in vivo. We did not observe any specific co-localization of p53 with sites of UV-induced DNA damage, but did observe rapid co-localization of both p48 and XPC to these sites. p48 bound to UV photoproducts in cells mutant or deficient for either p53, XPC or XPA, and p48 enhanced XPC binding to lesions, suggesting that p48 is a very early recognition factor of DNA damage. We propose that p53 functions to transcriptionally regulate the DDB2 and XPC NER genes, but does not activate the NER pathway through direct interactions with UV-induced damaged DNA or other repair factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product.

The initial step in mammalian nucleotide excision repair (NER) of the major UV-induced photoproducts, cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs), requires lesion recognition. It is believed that the heterodimeric proteins XPC/hHR23B and UV-DDB (UV-damaged DNA binding factor, composed of the p48 and p127 subunits) perform this function in genomic DNA, but their requireme...

متن کامل

p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene.

The p53 tumor suppressor gene product is a transcription factor involved in cell-cycle regulation, apoptosis, and DNA repair. We and others have shown that p53 is required for efficient nucleotide excision repair (NER) of UV-induced DNA lesions. p53-deficient cells are defective in the repair of UV photoproducts in genomic DNA but proficient for transcription-coupled repair. Therefore, we exami...

متن کامل

UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2.

The tumor suppressor p53 protein has been established as an important factor in modulating the efficiency of global genomic repair. Our recent repair studies in human cells reported that p53 regulates the recruitment of XPC and TFIIH proteins to specific DNA damage sites. Here, we have examined the influence of p53 and damaged-DNA binding complex (DDB2) proteins on the distribution of XPC withi...

متن کامل

Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation.

The UV-damaged DNA binding protein complex (UV-DDB) is implicated in global genomic nucleotide excision repair (NER) in mammalian cells. The complex consists of a heterodimer of p127 and p48. UV-DDB is defective in one complementation group (XP-E) of the heritable, skin cancer-prone disorder xeroderma pigmentosum. Upon UV irradiation of primate cells, UV-DDB associates tightly with chromatin, c...

متن کامل

Proficient global nucleotide excision repair in human keratinocytes but not in fibroblasts deficient in p53.

The p53 tumor suppressor protein is important for many cellular responses to DNA damage in mammalian cells, but its role in regulating DNA repair in human keratinocytes is undefined. We compared the nucleotide excision repair (NER) response of human fibroblasts and keratinocytes deficient in p53. Fibroblasts expressing human papillomavirus 16 E6 oncoprotein had impaired repair of UV radiation-i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 24 5  شماره 

صفحات  -

تاریخ انتشار 2003